This study was performed to evaluate the dynamics of an arterial first pass gadolinium (Gd) contrast medium (CM) bolus at the descending aorta (DAo), depending on various saline flush and Gd volumes. Using an ultra-fast two- dimensional GE-sequence (Siemens Vision, 1.5-T), 200 sequential cross-sectional images of the addressed vessel (1 slice/s) were obtained. Several saline flush volumes (15 mL, 30 mL, and 60 mL) were applied following the administration of 10 mL Gd (single dose) to a group of 4 normal volunteers (body weight 50-55 kg) using a mechanical MR injector (injection rate = 3.0 mL/s). Additionally, when performing a second test series, the saline volume remained constant, while the Gd volumes were varied from half doses to triple doses (5, 10, 20, and 30 mL Gd were given to every volunteer of the group). The signal intensity versus time (SI/T) curve at a measured region of interest (ROI) within the DAo was calculated. The bolus arrival time (BAT), the maximal signal-to-noise ratio (SNR(max)), the bolus time length (BL; 75% and 80% maximum intensity duration), the slope of the SI/T curve, and the areas below the SI/T curve for both the 80% and 75% maximum intensity duration level (INT(80%) and INT(75%)) were calculated. The increase of saline flush volume from 30 to 60 mL caused significant bolus lengthening of approximately 50% (mean BL = 9.5 s, 10.3 s, and 15.4 s for 15 mL, 30 mL, and 60 mL saline flush volumes, respectively, measured as SI/T duration at the 75% SNR(max) level). Using saline flush volumes equal to or higher than 30 mL increased the slope of the SI/T curve. A continuous increase of INT(75%/80%) by using higher saline flush volumes was found. Different saline and Gd volumes did not affect the SNR(max) and the BAT. Only the low dose (0.05 mmol/kg Gd) showed a 17%-21.6% significantly lower SNR(max). The BL and the INT increased mainly by enlarging of applied Gd volume from single to double dose (BL(75%) and INT(75%) were 9.6 s and 1305, 12.3 s and 2121, 38.5 s and 6181, 37.8 s and 6613 for 5, 10, 20, and 30 mL applied Gd volume, respectively). The arterial bolus length benefits from increasing Gd and saline flush volumes due to increased venous bolus length and wash out effects of Gd within the injection site of the vein. Doses larger than a single dose are not needed to increase the SNR in contrast-enhanced magnetic resonance angiography images of the thoracic aorta.