As data center interconnects surge towards a 1.6 Tbit/s data rate, achieving cost-effective and technically viable solutions present challenges. Intensity-modulation and direct-detection (IM/DD) transmission over O-Band using standard single-mode fiber has emerged as a promising low-cost option. However, understanding the limitations imposed by factors like chromatic dispersion (CD) and fiber non-linearity (FWM) is crucial, particularly in different scenarios, such as operating at 8 × 100 GBaud PAM4 in an LWDM-8 configuration. In this paper, we adopt a statistical approach to assess outage probability and consider practical fluctuations in link parameters. Numerical modeling suggests IM/DD can span distances up to 5 km with transmission power under 0 dBm using this architecture. In addition, we evaluate recently proposed architecture to achieve 800 Gbit/s and 1.6 Tbit/s using an LWDM4 configuration and assess the impact of FWM to understand the role of zero-dispersion wavelength (ZDW) of the fiber. Coherent transmission leverages more powerful signal processing capabilities which extends the transmission range. Yet, reducing coherent transmission complexity is desirable for cost-effective and power-efficient data center applications. By exploring dual wavelength transmission and DP-16 QAM transceivers, akin to IM/DD counterparts, the feasibility of streamlining this architecture is also studied. The analysis indicates that the complexity of the coherent approach can be reduced without significant penalties for distances up to 10 km.
Read full abstract