Abstract

We propose a rapid and precise scheme for characterizing the full-field frequency response of a thin-film lithium niobate-based intensity modulator (TFLN-IM) via a specially designed multi-tone microwave signal. Our proposed scheme remains insensitive to the bias-drift of IM. Experimental verification is implemented with a self-packaged TFLN-IM with a 3 dB bandwidth of 30 GHz. In comparison with the vector network analyzer (VNA) characterization results, the deviation values of the amplitude-frequency response (AFR) and phase-frequency response (PFR) within the 50 GHz bandwidth are below 0.3 dB and 0.15 rad, respectively. When the bias is drifted within 90% of the Vπ range, the deviation fluctuation values of AFR and PFR are less than 0.3 dB and 0.05 rad, respectively. With the help of the full-field response results, we can pre-compensate the TFLN-IM for the 64 Gbaud PAM-4 signals under the back-to-back (B2B) transmission, achieving a received optical power (ROP) gain of 2.3 dB. The versatility of our proposed full-field response characterization scheme can extend to various optical transceivers, offering the advantage of low cost, robust operation, and flexible implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.