We propose a novel Schell model source for generating twisted partially coherent beams with an initial radius of curvature, which is called a twisted flat-topped cosine Gaussian Schell-model (TFCGSM) source. The TFCGSM beam comprises a wavefront phase and a flat-top structure, with the source degree of coherence determined by two cosine functions. Based on the Huygens–Fresnel principle, the general analytical expression of the cross-spectral density function of the TFCGSM beam propagating through the paraxial ABCD optical system is derived, and then its propagation properties are studied. The results show that the conversion of the array of the beam and the non-uniform structure can be realized by adjusting the parameters in the source plane. As the propagation distance of the TFCGSM beam increases, it rotates around the axis and increases the intensity of the array distribution. Surprisingly, the initial radius of curvature can cause the beam to rotate. The unique shape and properties of the TFCGSM beam create new possibilities for optical communication and enhanced optical functions.