Abstract

Adding a twist phase term to the cross-spectral density (CSD) function of a partially coherent source can be done if and only if the resulting function remains nonnegative definite. Constraints on the twist term that guarantee the validity of the resulting CSD have been derived only for Twisted Gaussian Schell-model (TGSM) sources. Here, an infinite family of higher-order TGSM sources is introduced, whose CSDs are expressed as products of the CSD of a standard TGSM source times Hermite polynomials of arbitrary orders and suitable arguments. All the members present the same twist term and for all of them the twist-coherence constraint keeps obeying the form valid for a standard TGSM source. They can be used as building blocks for constructing an endless number of valid twisted CSDs, with an assigned value of the twist parameter and intensity and/or coherence features that can be very different from those of a standard TGSM source. Through partial transposition, higher-order TGSM CSDs are converted into higher-order Astigmatic Gaussian Schell-model (AGSM) CSDs. The problem of the separability of higher-order TGSM and AGSM CSDs is addressed, and conditions ensuring their separability are derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.