The objective of this study was to identify genomic regions and genes associated with resistance to gastrointestinal nematodes in Australian Merino sheep in Uruguay, using the single-step GWAS methodology (ssGWAS), which is based on genomic estimated breeding values (GEBVs) obtained from a combination of pedigree, genomic, and phenotypic data. This methodology converts GEBVs into SNP effects. The analysis included 26,638 animals with fecal egg count (FEC) records obtained in two independent parasitic cycles (FEC1 and FEC2) and 1700 50K SNP genotypes. The comparison of genomic regions was based on genetic variances (gVar(%)) explained by non-overlapping regions of 20 SNPs. For FEC1 and FEC2, 18 and 22 genomic windows exceeded the significance threshold (gVar(%) ≥ 0.22%), respectively. The genomic regions with strong associations with FEC1 were located on chromosomes OAR 2, 6, 11, 21, and 25, and for FEC2 on OAR 5, 6, and 11. The proportion of genetic variance attributed to the top windows was 0.83% and 1.9% for FEC1 and FEC2, respectively. The 33 candidate genes shared between the two traits were subjected to enrichment analysis, revealing a marked enrichment in biological processes related to immune system functions. These results contribute to the understanding of the genetics underlying gastrointestinal parasite resistance and its implications for other productive and welfare traits in animal breeding programs.
Read full abstract