Lactoferrin (LF) is a multifunctional glycoprotein in mammalian milk. In a previous report, we showed that enteric-coated bovine LF tablets can decrease visceral fat accumulation, hypothesising that the enteric coating is critical to the functional peptides reaching the visceral fat tissue and exerting their anti-adipogenic activity. The aim of the present study was to assess whether ingested LF can retain its anti-adipogenic activity. We therefore investigated the effects of LF and LF treated with digestive enzymes (the stomach enzyme pepsin and the small intestine enzyme trypsin) on lipid accumulation in pre-adipocytes derived from the mesenteric fat tissue of male Sprague-Dawley rats. Lipid accumulation in pre-adipocytes was significantly reduced by LF in a dose-dependent manner and was associated with reduction in gene expression of CCAAT/enhancer binding protein delta, CCAAT/enhancer binding protein alpha and PPARγ as revealed by DNA microarray analysis. Trypsin-treated LF continued to show anti-adipogenic action, whereas pepsin-treated LF abrogated the activity. When an LF solution (1000 mg bovine LF) was administered by gastric intubation to Sprague-Dawley rats, immunoreactive LF determined by ELISA could be detected in mesenteric fat tissue at a concentration of 14·4 μg/g fat after 15 min. The overall results point to the importance of enteric coating for action of LF as a visceral fat-reducing agent when administered in oral form.
Read full abstract