Air pollution has become the most important environmental and human health threat as it is accounting for about 7 million deaths across the globe every year. Particulate matter (PM) derived from the combustion of fossil fuels, biomass, and other agricultural residues pollutes the atmospheric air which affects the quality of the environment and poses a great threat to human health. Ecological imbalance, climatic variation, and cardiovascular and respiratory problems among humans are significant extortions due to PM pollution. Scientific approaches were initiated to limit the levels of PM in the atmospheric air and the use of nanofiber mats has received wide attention as these possess versatile properties including nanoscale-sized pore structure, homogeneity in their size distribution with high specific surface area, and low basis weight. To exploit their filtration potential towards wide classes of pollutants and also to enhance the capturing efficacy, functionalized nanofibers are currently in practice with tailor-made modifications on the surface. The present review provides a comprehensive report on the different fabrication processes of functionalized nanofibers along with the controlling factors affecting the efficacy of the gas separation process. Also, it provides technical insights on the mass transfer aspects of PM filtration by elucidation their mechanism which can provide vital information on the rate-controlling diffusive flux(es). Conclusively, the practical challenges encountered in the large-scale air filtration systems such as filter cleaning, flow-rate regulation, pressure drop, and extent of reusability are discussed, and the review has identified potential gaps in the current research and can be considered for the prospective research in the area of PM separation process.
Read full abstract