Abstract
Understanding gas sorption by water in the atmosphere is an active research area because the gases can significantly alter the radiation and chemical properties of the atmosphere. We attempt to elucidate the molecular details of the gas sorption of water and three common atmospheric gases (N2O5, SO2, and O3) by water droplets/slabs in molecular dynamics simulations. The system size effects are investigated, and we show that the calculated solvation free energy decreases linearly as a function of the reciprocal of the number of water molecules from 1/215 to 1/1000 in both the slab and the droplet systems. By analyzing the infinitely large system size limit by extrapolation, we find that all our droplet results are more accurate than the slab results when compared to the experimental values. We also show how the choice of restraints in umbrella sampling can affect the sampling efficiency for the droplet systems. The free energy changes were decomposed into the energetic ΔU and entropic -TΔS contributions to reveal the molecular details of the gas sorption processes. By further decomposing ΔU into Lennard-Jones and Coulombic interactions, we observe that the ΔU trends are primarily determined by local effects due to the size of the gas molecule, charge distribution, and solvation structure around the gas molecule. Moreover, we find that there is a strong correlation between the change in the entropic contribution and the mean residence time of water, which is spatially nonlocal and related to the mobility of water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.