This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to ~0.3 at 51 keV neutron energy. The counter response based on ICRP 60 was comparable to an ideal response of 1.0 above 600 keV, which dropped to ~0.8 at 159 keV and ~0.4 at 51 keV neutron energy. The decline in counter quality factor response based on ICRP 60 was found to be much steeper than that when using the instrument’s built-in function for quality factor.The REM-500 measures a dose equivalent at 727 keV,which is 60% of the ambient dose equivalent, 40% at 159 keV,and 15% at 51 keV. Two algorithms have been developed, one for real time measurement and another to be used post measurement,and their efficacy is demonstrated in determining the quality factor and the ambient dose equivalent in low energy neutron fields, which are typical for the workplace environment in CANDU® nuclear power generating stations.
Read full abstract