ABSTRACT Purpose/Aim Corneal stromal fibroblasts are connected to each other via gap junctions, which contribute to maintenance of corneal homeostasis. Viral infection of the corneal stroma can result in inflammation and scarring. The effects of polyinosinic-polycytidylic acid [poly(I:C)], an analog of viral double-stranded RNA, on gap junctional intercellular communication (GJIC) in cultured human corneal fibroblasts (HCFs) were examined. Materials and Methods Cultured HCFs were exposed to poly(I:C) in the absence or presence of inhibitors of mitogen-activated protein kinase (MAPK) signaling or the antioxidant N-acetyl-L-cysteine (NAC). Expression of the gap junction protein connexin 43 (Cx43) was examined by immunoblot and immunofluorescence analyses. The level of Cx43 mRNA or microRNA-21 or −130a was determined by quantitative reverse transcription–polymerase chain reaction analysis. GJIC was measured with a dye coupling assay. The amount of malondialdehyde and the activity of superoxide dismutase (SOD) were measured with assay kits. Results Exposure of HCFs to poly(I:C) resulted in down-regulation of Cx43 expression and GJIC activity as well as in up-regulation of microRNA-21 expression. Poly(I:C) increased the amount of malondialdehyde and reduced the activity of SOD in the cells, and these effects were prevented by NAC. The inhibitory effects of poly(I:C) on both Cx43 expression and GJIC activity were attenuated by NAC and by c-Jun NH2-terminal kinase (JNK) inhibitor II. Conclusions Poly(I:C) inhibited Cx43 expression and GJIC in cultured HCFs, possibly as a result of the associated up-regulation of microRNA-21. Poly(I:C) also increased oxidative stress in these cells, and such stress together with signaling by the MAPK JNK was implicated in the effects of poly(I:C) on Cx43 expression and GJIC activity. Down-regulation of GJIC activity among corneal fibroblasts by double-stranded RNA may thus contribute to the disruption of stromal homeostasis during viral infection of the cornea.
Read full abstract