Abstract

Given the low mitotic activity of cardiomyocytes, the contractile unit of the heart, these cells strongly rely on efficient and highly regulated mechanisms of protein degradation to eliminate unwanted potentially toxic proteins. This is particularly important in the context of disease, where an impairment of protein quality control mechanisms underlies the onset and development of diverse cardiovascular maladies. One of the biological processes which is tightly regulated by proteolysis mechanisms is intercellular communication. The different types of cells that form the heart, including cardiomyocytes, endothelial cells, fibroblasts, and macrophages, can communicate directly, through gap junctions (GJ) or tunneling nanotubes (TNT), or at long distances, via extracellular vesicles (EV) or soluble factors.The direct communication between cardiomyocytes is vital to ensure the anisotropic propagation of the electrical impulse, which allows the heart to beat in a coordinated and synchronized manner, as a functional syncytium. The rapid and efficient propagation of the depolarization wave is mainly conducted by low resistance channels called GJ, formed by six subunits of a family of proteins named Cxs. Dysfunctional GJ intercellular communication, due to increased degradation and/or redistribution of connexin43 (Cx43), the main Cx present in the heart, has been associated with several cardiac disorders, such as myocardial ischemia, hypertrophy, arrhythmia, and heart failure. Besides electrical coupling, a fine-tuned exchange of information, namely proteins and microRNAs, conveyed by EV is important to ensure organ function and homeostasis. Disease-induced deregulation of EV-mediated communication between cardiac cells has been implicated in diverse processes such as inflammation, angiogenesis, and fibrosis. Therefore, a better understanding of the mechanisms whereby proteolysis modulates the cross talk between cardiac cells is of utmost importance to develop new strategies to tackle diseases caused by defects in intercellular communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.