The Chinese government is implementing policies, such as the “Guidance on comprehensive utilization of bulk solid waste for the 14th Five-Year Plan period”, to stimulate phosphogypsum (PG) reduction and recycling. Thus, the comprehensive evaluation of PG recycling technologies for sustainable development is crucial. This study proposes a novel multi-criteria decision analysis (MCDA) method that considers the criteria of resources, environment, economy, and society and risk attitudes of decision-makers and integrates game theory (GT) and utility theory for criteria weighting and ranking to assess industrial-scale PG recycling technologies in China. The results demonstrate that GT provides more reasonable criteria weights than individual weighting methods. PG-based lightweight plaster is the top performer in the resource and environmental dimensions owing to its exceptional resource and energy efficiency. PG utilized for dry-mix mortar and organic fertilizer production exhibited the best utility performance of 0.74 and 0.73, respectively. Measures, such as subsidies and product publicity, should be implemented to promote these technologies. However, technologies with poor performance, such as PG used for the co-production of sulfuric acid and fertilizer or cement, may require optimization or substitution for the sustainable recycling of PG. The proposed MCDA method is robust and can serve as a reliable decision-making tool for other waste-recycling technologies. However, caution must be exercised when determining risk attitude using the MCDA method as it may vary with the number of technologies and affect the final rankings.
Read full abstract