Abstract

With the rapid development of renewable energy and the continuous growth of new loads, VPP has become an important form of smart grid and energy internet due to its flexible and effective management of distributed energy. During the operation of Virtual power plant, there is a game relationship between the system operator and VPP, and they are in a non-complete information environment. However, most of the current game optimization modeling is under the condition of complete information, and the game model based on complete information cannot solve this problem. This article focuses on the VPP cluster trading problem based on non-complete information game theory, constructs a Bayesian game model for multiple VPPs with multiple subjects under the master-slave game framework by introducing the Bayesian concept to optimize the cluster transactions within VPPs, and verifies the effectiveness of the model through simulation experiments. The experimental results show that the multi-VPP multi-subject Bayesian game model established in the study can guarantee the privacy of each subject and effectively reduce PAR, thus ensuring the security and stability of the VPP network and reducing cost expenditures, which has practicality in actual VPP cluster transactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call