BackgroundGallium has demonstrated strong anti-inflammatory activity in numerous animal studies, and has also demonstrated direct antiviral activity against the influenza A H1N1 virus and the human immunodeficiency virus (HIV). Gallium maltolate (GaM), a small metal-organic coordination complex, has been tested in several Phase 1 clinical trials, in which no dose-limiting or other serious toxicity was reported, even at high daily oral doses for several months at a time. For these reasons, GaM may be considered a potential candidate to treat coronavirus disease 2019 (COVID-19), which is caused by the SARS-CoV-2 virus and can result in severe, sometimes lethal, inflammatory reactions. In this study, we assessed the ability of GaM to inhibit the replication of SARS-CoV-2 in a culture of Vero E6 cells.MethodsThe efficacy of GaM in inhibiting the replication of SARS-CoV-2 was determined in a screening assay using cultured Vero E6 cells. The cytotoxicity of GaM in uninfected cells was determined using the Cell Counting Kit-8 (CCK-8) colorimetric assay.ResultsThe results showed that GaM inhibits viral replication in a dose-dependent manner, with the concentration that inhibits replication by 50% (EC50) being about 14 µM. No cytotoxicity was observed at concentrations up to at least 200 µM.ConclusionThe in vitro activity of GaM against SARS-CoV-2, together with GaM’s known anti-inflammatory activity, provide justification for testing GaM in COVID-19 patients.
Read full abstract