Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost treatment challenge in today’s clinical practice. Natural coumarins contain a variety of bioactivities and have the ability to alter resistance in several ways. In developing effective drug delivery methods, the goal is to maximize biocompatibility while minimizing toxicity. With this in mind, this work investigated the site-specific potential of dendrimer G4 poloxamer nanoparticles loaded with bioactive coumarin. The goal of the current work is to deliver a complete evaluation of dendrimer G4 poloxamer nanoparticles against MRSA. Coumarin-loaded dendrimer G4 poloxamer nanoparticles were thoroughly investigated and characterized using various techniques, including particle size, shape, entrapment efficiency, in vitro drug release, hemolysis assay, cytotoxicity, antibacterial activity, and bactericidal kinetics. Studies showed that the newly developed dendrimer G4 poloxamer nanoparticles exhibited significantly lower levels of hemolysis and cytotoxicity. The results showed that the in vitro drug release of coumarin from dendrimer G4 poloxamer nanoparticles was slower compared to coumarin in its free form. This innovative therapeutic delivery technology may enhance the defense of coumarin against MRSA.