Utilizing fibre-reinforced concrete is still a difficulty for present engineers. Generally, it is acknowledged that the mechanical, cracking and fracture qualities of fibre-reinforced concrete are much better than those of conventional concrete. The addition of fibres to the concrete matrix mitigates its fragility. Typically, short fibres are utilised in concrete to prevent cracks caused by drying and autogenous shrinkage. Currently, there is a substantial increase in the use of short alkali-resistant glass fibres. This experiment was conducted to examine the influence of glass fibre reinforcement on the compressive and flexural behaviour of concrete. This research investigates the characteristics of glass fibres reinforced concrete (GFRC) after 7 and 28 days of curing, such that GFRC may be employed in construction. Concrete containing short alkali-resistant glass fibres of 36 mm in length and 1% volume fraction (VF) was developed for this purpose. The testing findings revealed that the average compressive strength of GFRC after 28 days of curing was 72.06 MPa. The flexural properties of GFRC are determined, and the 7-day and 28-day average bending strengths of GFRC concrete samples are 6.46 MPa and 7.94 MPa, respectively, indicating that GFRC responds well under loading conditions.