Abstract

Doubly-curved ribbed concrete shells are a materially efficient means of spanning large areas such as roofs and floors. However, the fabrication of such structures poses challenges in terms of formwork manufacturing as well as material deposition. This has led to their decline compared to more prismatic shapes such as flat slabs which can be manufactured more economically. This paper presents a novel fabrication process called Automated Robotic Concrete Spraying (ARCS) by which glass fibre reinforced concrete (GFRC) is sprayed onto a curved formwork to create thin shell components of variable thickness. The trajectory planning and generation algorithm developed and implemented in ARCS to create such components is presented. Two sets of prototype shells were fabricated: one which forms the segments of a larger structural floor demonstrator and another consisting of a single component with deep ribs on a thin shell. The sequencing used to generate the spray paths for each component is outlined, with each prototype using two different strategies to add ribs onto the fabricated shells. While the fabrication process has been used in conjunction with a pin-bed mould actuating flexible formwork to create the spraying surface, the trajectory planning approach is adaptable enough such that any formwork can be utilised. Combined with the output speed of material deposition, ARCS offers the potential to enable mass production and customisation of doubly-curved ribbed structural concrete shells of variable thickness as an industrial process at an architectural scale. • A new fabrication process to create curved concrete shells with ribs is presented. • A robotic trajectory planning algorithm leveraging isolines of geodesics was formulated. • Two sets of ribbed concrete shell prototypes were fabricated using the process developed. • The high throughput of the fabrication process lends itself to offsite mass production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.