In this study, we extend the research on the multimodal routing problem by considering flexible time window and multi-uncertainty environment. A multi-uncertainty environment includes uncertainty regarding the demand for goods, the travel speed of the transportation mode, and the transfer time between different transportation modes. This environment further results in uncertainty regarding the delivery time of goods at their destination and the earliness and lateness caused by time window violations. This study adopts triangular fuzzy numbers to model the uncertain parameters and the resulting uncertain variables. Then, a fuzzy mixed integer nonlinear programming model is established to formulate the specific problem, including both fuzzy parameters and fuzzy variables. To make the problem easily solvable, this study employs chance-constrained programming and linearization to process the proposed model to obtain an equivalent credibilistic chance-constrained linear programming reformulation with an attainable global optimum solution. A numerical case study based on a commonly used multimodal network structure is presented to demonstrate the feasibility of the proposed method. Compared to hard and soft time windows, the numerical case analysis reveals the advantages of the flexible time window in reducing the total costs, avoiding low reliability regarding timeliness, and providing confidence level-sensitive route schemes to achieve flexible routing decision-making under uncertainty. Furthermore, the numerical case analysis verifies that it is necessary to model the multi-uncertainty environment to satisfy the improved customer requirements for timeliness and enhance the flexibility of the routing, and multimodal transportation is better than unimodal transportation when routing goods in an uncertain environment. The sensitivity analysis in the numerical case study shows the conflicting relationship between the economic objective and the reliability regarding the timeliness of the routing, and the result provides a reference for the customer to find a balance between them.
Read full abstract