Abstract

In this paper, stationary random processes with fuzzy states are studied. The properties of their numerical characteristics—fuzzy expectations, expectations, and covariance functions—are established. The spectral representation of the covariance function, the generalized Wiener–Khinchin theorem, is proved. The main attention is paid to the problem of transforming a stationary fuzzy random process (signal) by a linear dynamic system. Explicitform relationships are obtained for the fuzzy expectations (and expectations) of input and output stationary fuzzy random processes. An algorithm is developed and justified to calculate the covariance function of a stationary fuzzy random process at the output of a linear dynamic system from the covariance function of a stationary input fuzzy random process. The results rest on the properties of fuzzy random variables and numerical random processes. Triangular fuzzy random processes are considered as examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.