The last quarter century has witnessed the introduction of a variety of powerful techniques that have allowed visualization of organ structure and function with exquisite detail. This in turn has brought about a true revolution in the day-to-day practice of medicine. Structural imaging with x-ray computerized tomography and magnetic resonance imaging has added tremendously to many areas of medicine, including preoperative evaluation of patients. Many surgical procedures have been replaced by minimally invasive techniques, which have become a reality only because of the availability of modern imaging modalities. However, despite such accomplishments, structural imaging is quite insensitive for detecting early disease in which there often are no gross structural alterations in organ anatomy. Therefore, these modalities should be complemented by methodologies that can detect abnormalities at the molecular and cellular levels. The introduction of [ 18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) in 1976 as a molecular imaging technique clearly has shown the power of this approach for treating a multitude of serious disorders. The impact of FDG-PET has been particularly impressive in patients with cancer diagnosis, for whom it has become important in staging, monitoring response to treatment, and detecting recurrence. In this review, we emphasize the role of FDG-PET in the assessment of central nervous system maladies, malignant neoplastic processes, infectious and inflammatory diseases, and cardiovascular disorders. New radiotracers are being developed and promise to expand further the list of indications for PET. These include novel tracers for cancer diagnosis and treatment capable of detecting hypoxia and angiogenesis. Prospects for developing new tracers for imaging other organ diseases also appear very promising.