The accurate prediction of the future trajectories of traffic participants is crucial for enhancing the safety and decision-making capabilities of autonomous vehicles. Modeling social interactions among agents and revealing the inherent relationships is crucial for accurate trajectory prediction. In this context, we propose a goal-guided and interaction-aware state refinement graph attention network (SRGAT) for multi-agent trajectory prediction. This model effectively integrates high-precision map data and dynamic traffic states and captures long-term temporal dependencies through the Transformer network. Based on these dependencies, it generates multiple potential goals and Points of Interest (POIs). Through its dual-branch, multimodal prediction approach, the model not only proposes various plausible future trajectories associated with these POIs, but also rigorously assesses the confidence levels of each trajectory. This goal-oriented strategy enables SRGAT to accurately predict the future movement trajectories of other vehicles in complex traffic scenarios. Tested on the Argoverse and nuScenes datasets, SRGAT surpasses existing algorithms in key performance metrics by adeptly integrating past trajectories and current context. This goal-guided approach not only enhances long-term prediction accuracy, but also ensures its reliability, demonstrating a significant advancement in trajectory forecasting.