Drought is an increasingly critical global challenge, significantly impacting agricultural productivity, food security, and ecosystem stability. As climate change intensifies the frequency and severity of drought events, innovative strategies are essential to enhance plant resilience and sustain agricultural systems. This review explores the vital role of beneficial microbes in conferring drought tolerance, focusing on Plant Growth-Promoting Rhizobacteria (PGPR), mycorrhizal fungi, endophytes, actinomycetes, and cyanobacteria. These microorganisms mitigate drought stress through diverse mechanisms, including osmotic adjustment, enhancement of root architecture, modulation of phytohormones, induction of antioxidant defenses, and regulation of stress-responsive gene expression. Ecological and agricultural innovations leveraging these beneficial microbes have demonstrated significant potential in bolstering drought resilience. Strategies such as soil microbiome engineering, bioaugmentation, and the integration of microbial synergies within pest management frameworks enhance ecosystem resilience and agricultural sustainability. Additionally, advancements in agricultural practices, including seed coating, soil amendments, the development of microbial consortia, and precision agriculture technologies, have validated the effectiveness and scalability of microbial interventions in diverse farming systems. Despite promising advancements, several challenges hinder the widespread adoption of microbial solutions. Environmental variability can affect microbial performance, necessitating the development of robust and adaptable strains. Scale-up and commercialization hurdles, economic constraints, and regulatory and safety considerations also pose significant barriers. Furthermore, the complex interactions between microbes, plants, and their environments require a deeper understanding to optimize microbial benefits consistently. Future research should focus on integrating cutting-edge technologies such as genomics, synthetic biology, and precision agriculture to refine and enhance microbial interventions. Collaborative efforts among academia, industry, and government are essential to bridge the gap between research and practical implementation. By addressing these challenges and harnessing microbial innovations, it is possible to develop resilient and sustainable agricultural systems capable of thriving in an increasingly water-scarce world.
Read full abstract