Here, novel hydroxyl and carboxyl functionalized multiwalled carbon nanotubes (AHF-MWCNT and ACF-MWCNT) were successfully synthesized and introduced for modification and antifouling improvement of the PVDF membrane. The blending effect of AHF-MWCNT and ACF-MWCNT on the morphology and surface properties of the PVDF membrane was explored by SEM, AFM, water contact angle, and zeta potential analysis. The results indicated that the membrane surface has become more hydrophilic, smoother as well more negative. In addition, the overall porosity and mean pore radius are increased by MWCNTs embedding. The filtration performance, antifouling and dye separation of the nanocomposite membranes were improved by adding any amounts of AHF-MWCNT and ACF-MWCNT in the PVDF membrane matrix. The carboxylic modification presented better performance than the hydroxyl functionalization. The 0.1 wt% ACF-MWCNT blended membrane presented an optimum performance with 46 L m−2 h−1 bar−1 permeability, 93% FRR, and 97.3% dye rejection. Consequently, embedding functionalized MWCNT in the PVDF membrane matrix was led to improvement of membrane characteristics and enhancement of pure water flux, antifouling feature, and dye separation. So, the functionalized MWCNT could be a promising additive for the PVDF membrane modification.
Read full abstract