Dipeptides have attracted much attention as post-amino acids with physical properties and functions different from those of amino acids. However, a given dipeptide cannot be distinguished by mass spectrometry from its structural isomer with an opposite amino acid binding order unless these isomers are separated before introduction, which complicates the comprehensive analysis of dipeptides. Herein, a novel analytical platform for dipeptide analysis by capillary electrophoresis tandem mass spectrometry and liquid chromatography tandem mass spectrometry is developed. This method is used to quantitate 335 dipeptides and achieves excellent separation of structural isomers with opposite binding orders, high correlation coefficients, and low instrumental detection limits (0.088-83.1 nM). Moreover, acceptable recoveries (70-135%) are observed for most tested dipeptides in chicken liver samples spiked both before and after preparation. The developed method is also applied to the quantitation of dipeptides in the livers of mice fed different diets to detect 236 dipeptides, and the shift from a normal diet to a high-fat diet is shown to increase/decrease (p < 0.05, fold-change < 0.5) the contents of 0/29 dipeptides, respectively. The developed method is expected to facilitate the search for new dipeptide applications such as novel functional components of foods and biomarkers of diseases.