Substituting Ni with Au in NiTi leads to dramatic increases in transformation temperatures, meeting one of the requirements for a viable high temperature actuator material. Consequently, four alloys containing between 49 and 51 at.% Ti, a fixed 40 at.% Au, and balance Ni, were prepared and investigated in detail using load-biased thermal cycling (LBTC), scanning electron microscopy (SEM), aberration corrected scanning transmission electron microscopy (STEM), and X-ray energy dispersive spectroscopy (XEDS). LBTC experiments demonstrated work output well above 400 °C, with full recovery up to 100 MPa. The alloys exhibit minimal variation in shape memory properties despite the relatively large composition range from Ti-lean to Ti-rich, in stark contrast to most other NiTi-based systems, which demonstrate extreme compositional sensitivity. Electron beam analysis revealed the presence of two types of secondary phases present in all compositions, which are subsequently characterized. Differences in secondary phase content as a function of alloy composition is shown to have a moderating effect on the transforming matrix composition - an important asset for this alloy system - potentially easing processing requirements and opening up shape memory alloys to new fabrication techniques. Unrecovered strain during cycling at higher loads is analyzed from a theoretical perspective to gain insight into the mechanisms of defect formation responsible for functional fatigue.