This article comprises the study of class SE∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal{S}_{E}^{\\ast }$\\end{document} that represents the class of normalized analytic functions f satisfying ςf′(z)/f(ς)≺sech(ς)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}${\\varsigma \\mathsf{f}}^{\\prime }(z)/\\mathsf{f}( {\\varsigma })\\prec \\sec h ( \\varsigma ) $\\end{document}. The geometry of functions of class SE∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal{S}_{E}^{\\ast }$\\end{document} is star-shaped, which is confined in the symmetric domain of a secant hyperbolic function. We find sharp coefficient results and sharp Hankel determinants of order two and three for functions in the class SE∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\mathcal{S}_{E}^{\\ast }$\\end{document}. We also investigate the same sharp results for inverse coefficients.
Read full abstract