This study aimed to investigate the effectiveness of the full-scale internal circulation (IC) reactor in biodegrading of municipal solid waste (MSW) fresh leachate under mesophilic conditions, where the anaerobic process stability, biogas yield, and sludge granulation were intensively investigated. The effects of operational parameters on the influent organic loading rate (OLR), chemical oxygen demand (COD) removal efficiency, alkalinity (ALK), pH, volatile fatty acids (VFAs) accumulation, and effluent recirculation were also studied. The results showed that the reactor operated stably and effectively. The COD removal efficiency and biogas yield could be maintained at (92.8 ± 2.0)% and (0.47 ± 0.05) m3/kg CODremoval, respectively, with the influent OLR (24.5 ± 0.9) kg COD/(m3 d) and hydraulic retention time (HRT) 2.7d during the stable operation phase. Meanwhile, this study demonstrated that 1.5–3.0 m/h would be the optimal Vup for the reactor, corresponding to the effluent recirculation of 32.5–78.0 m3/h. Moreover, it was found that the content of extracellular polymeric substances (EPS) in the anaerobic sludge increased from 50.3 to 140.7 mg/g volatile suspended solids (VSS), and the sludge had good granular performance during the reactor operation.
Read full abstract