AbstractThis paper presents an assessment of the seismic performance of concrete columns internally reinforced with glass-fiber-reinforced polymers (GFRP) bars. Eight full-scale column prototypes with 1,650-mm shear span and 350-mm square cross-section were constructed and tested under combined lateral cyclic quasi-static and constant axial loading. The test specimens represent the lower portion of first-story columns between the footing and the contra-flexure point. The test parameters included longitudinal reinforcement type and ratio, level of axial load, and stirrup spacing. Test results showed that the drift capacity of GFRP-reinforced concrete (RC) rectangular columns at failure ranged between 8.5 and 12.5%, which exceeds the limitations of North American building codes. This indicates that the deformability of GFRP-RC column prototypes successfully replaced the ductility in steel–RC columns in dissipating the seismic energy in the presence of constant axial load. Furthermore, there was insignifican...
Read full abstract