We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We analyze the anisotropic $XY$ spin-$1∕2$ model evolved with a full many-body evolution operator. With the help of Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.
Read full abstract