Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus belonging to the family Bornaviridae within the order Mononegavirales. Whereas BoDV-1 causes neurological and behavioral disorders, called Borna disease (BD), in a wide range of mammals, its virulence in humans has been debated for several decades. However, a series of case reports in recent years have established the nature of BoDV-1 as a zoonotic pathogen that causes fatal encephalitis in humans. Although many virological properties of BoDV-1 have been revealed to date, the mechanism by which it causes fatal encephalitis in humans remains unclear. In addition, there are no effective vaccines or antiviral drugs that can be used in clinical practice. A reverse genetics approach to generating replication-competent recombinant viruses from full-length cDNA clones is a powerful tool that can be used to not only understand viral properties but also to develop vaccines and antiviral drugs. The rescue of recombinant BoDV-1 (rBoDV-1) was first reported in 2005. However, due to the slow nature of the replication of this virus, the rescue of high-titer rBoDV-1 required several months, limiting the use of this system. This review summarizes the history of the reverse genetics and artificial replication systems for orthobornaviruses and explores the recent progress in efforts to rescue rBoDV-1.