Solid oxide cell technology represents one of the most efficient methods for energy conversion and has been the subject of extensive research over the past few decades. With significant technological progress, solid oxide fuel cells (SOFCs) have made their way into the market, steadily increasing their market share across various sectors for power generation. Additionally, solid oxide electrolysis cells (SOECs) have attracted substantial interest recently as a highly promising method for the clean production of hydrogen and various chemicals. However, the economic competitiveness of SOFCs and SOECs against conventional fossil fuel-based technologies remains a challenge, with cell and stack lifetimes being a critical factor. Operating at high temperatures, both SOFCs and SOECs are prone to various degradation phenomena, which have been a focal point in their development. SOECs operate under an even harsher environment, leading to additional degradation mechanisms beyond those observed in SOFCs. Studying the degradation mechanisms of SOFCs and SOECs is challenging, primarily due to limitations in characterization techniques. However, recent advancements in characterization techniques for high-temperature phenomena, coupled with theoretical modeling tools, have significantly enhanced our understanding. This progress has provided valuable insights into strategies to prolong the lifetime of SOFC/SOEC cells and stacks. This presentation will review recent advancements in degradation studies and discuss mitigation strategies for major degradation issues, including Cr poisoning, electrode delamination, and Ni agglomeration.
Read full abstract