Abstract

Ternary NiFeTiOOH Catalyst for the Oxygen Evolution Reaction: Study of the Effect of the Addition of Ti at Different Loadings Wenjamin Moschkowitsch and Lior Elbaz Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, IsraelThe demand for energy is expected to grow rapidly in the next decades, but it cannot be solely fulfilled with fossil fuel-based technologies without having a huge impact on the environment. The shift to production of clean energy from alternative sources, such as wind and sun, raise the importance of energy storage technologies. One of the most prominent solutions is storing surplus energy, harvested at peak production times and seasons, in hydrogen. However, the production of hydrogen with methods that require as little energy as possible, as well as being sustainable, environmentally friendly and cheap, are still considered to be a big challenge.Water electrolysis is the simplest industrial process for hydrogen production, and can be linked to fuel cells technology. Among the available electrolyzers, alkaline electrolyzers (ALE) are considered state-of-the-art. Although they can work with platinum-group metal-free (PGM-free) catalysts, unfortunately, this technology still requires the use of PGM catalysts in order to increase the current density, and lower the reaction activation energy.In electrolyzers, water splits into oxygen and hydrogen in two separate reactions, taking place at the anode and cathode. The cathodic reaction is the Hydrogen Evolution Reaction (HER), which is considered to be relatively facile. The anodic, Oxygen Evolution Reaction (OER), is considered to be much more difficult, since it is a four-electron process with very sluggish kinetics. The best known catalysts for this reaction in acidic medium are IrO2 and RuO2, oxides of very rare and precious metals (Ir is the scarcest metal on earth’s crust). In addition, in acidic medium, most PGM-free catalysts, based on earth abundant elements, are considered unstable (these conditions have also shown to be detrimental for Ir and Ru-based catalysts). In contrast, in ALEs, PGM-free catalysts have shown to be a good alternative to PGM catalysts. The most common OER PGM-free catalysts are first-row transition metals in their oxide, hydroxide and oxyhydroxide forms.One such catalyst is nickel oxyhydroxide (NiOOH). The structure of this specific catalyst has been studied in great detail by many different research groups, yet there are several open questions regarding the OER mechanism, i.e. the exact catalytic center and active phase.Recent studies suggest that pure NiOOH is not very active at all, and that all of the activity can be attributed to iron impurities.Indeed, NiFeOOH with iron content of 15-25 %at, has a much higher activity and a much lower overpotential compared to other PGM-free catalysts. It can thus be regarded as a benchmark for this class of OER catalysts.It is well accepted by now that the bimetallic catalyst further increases the intrinsic catalytic activity, and that addition of other transition metals,can further increase it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call