The Fischer–Tropsch reaction was performed using a pilot-scale slurry bubble column reactor (SBCR) and a lab-scale continuous stirred tank reactor (CSTR). In contrast to the CSTR, a transitory induction period was observed in the SBCR. In this study, we investigated the catalyst performance during the induction period focusing on the hydrodynamic parameter changes inside the reactor. We measured the hydraulic pressure for the constant slurry thickness during FTS reaction. The FT wax product was regularly withdrawn using a metal filter and analyzed for density, oxygen concentration, and compositional analysis. The liquid density was affected by the dilution of the initial liquid media by fresh FT product for the whole reaction time of 180h. On the other hand, the oxygen concentration increased sharply for the initial 85h and then reached the steady state. Accordingly, the gas hold-up and CO conversion were enhanced for the same period. The increase in the gas hold-up could be explained by the coalescence inhibition effect of oxygenated compounds, which were the main byproducts when iron-based catalysts were used. The dynamic gas disengagement technique was employed to identify the coalescence inhibition effect of alcohol in the hydrocarbon system using a cylindrical acrylic bubble column.
Read full abstract