The peels obtained as a byproduct from the processing of fruits (prickly pears) of the Cactaceae family are a rich source of mucilage, a hydrocolloid biopolymer that may have potential application in water/wastewater treatment as a natural coagulant. In this study, the structural (UPLC-QTOF-MS, FTIR, Raman, NMR, XRD, and zeta potential), morphological (SEM), and thermal (DSC/TGA) characterizations of the mucilage extracted from the peels of Opuntia ficus-indica (OFI) fruits were carried out. UPLC-QTOF-MS results revealed the presence of a branched polymer with an average molecular weight of 0.44 KDa for this mucilage in aqua media. The NMR spectra of mucilage in DMSO-d6 indicated that it seemed well-suited as a coagulant with its typical oligosaccharide structure. FTIR studies confirmed the presence of hydroxyl and carboxyl functional groups in the mucilage, indicating its polyelectrolyte nature that could provide coagulating properties through binding and adsorption mechanisms. Likewise, the zeta potential of −23.63 ± 0.55 mV showed an anionic nature of the mucilage. Power XRD technique evidenced the presence of crystalline poly(glycine-β-alanine), glutamic acid, and syn-whewellite. SEM images revealed an irregular and amorphous morphology with cracks, which are suitable characteristics for adsorption mechanisms. The mucilage exhibited two endothermic transitions, with a decomposition temperature in uronic acid of 423.10 °C. These findings revealed that mucilage obtained from OFI fruit peels has molecular and physicochemical characteristics that are suited to its possible application as a natural coagulant in water/wastewater treatments.
Read full abstract