Massive MIMO deployments have been traditionally based on dedicated links in the front-haul, i.e., between the central processing units and the Access Points (APs). Recently, cell-free massive Multiple-Input Multiple-Output (MIMO) systems based on serial front-haul links have been discussed to simplify the deployments, among other reasons. However, the power consumption models currently used for cell-free massive MIMO deployments typically assume dedicated front-haul links. This paper highlights the inaccuracy of these models when applied to serial front-hauls and proposes simple adaptations to achieve more realistic results. The results obtained for an exemplary scenario show that the front-haul power would represent 61.73% of the total consumed power with the original models. In contrast, with the proposed adaptations, it could be as low as 1.59% of the total consumed power for some serial front-haul configurations. Additionally, the impact of considering APs with lower power consumption is studied, in which case, the percentages above would become 93.15% and 11.96%, respectively. Hence the importance of having power models that fit the front-haul topology.
Read full abstract