Abstract

Millimeter-wave (mm-wave) phased arrays can realize multi-Gb/s communication links but face challenges such as signal distribution and higher power consumption hindering their widespread deployment. Hybrid photonic mm-wave solutions combined with fiber-optics can address some of these bottlenecks. Here, we report an integrated photonic-assisted phased array transmitter applicable for low-power, compact radio heads in fiber to mm-wave fronthaul links. The transmitter utilizes optical heterodyning within an electronically controlled photonic network for mm-wave generation, beamforming, and steering. A photonic matrix phase adjustment architecture reduces the number of phase-shift elements from M × N to M + N lowering area and power requirements. A proof-of-concept 2 × 8 phased array transmitter is implemented that can operate from 24–29 GHz, has a steering range of 40°, and achieves 5 dBm EIRP at an optical power of 55 mW without using active mm-wave electronics. Data streams at 2.5 Gb/s are transmitted over 3.6 km of optical fiber and wirelessly transmitted attaining bit-error rates better than 10−11.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.