ObjectivesIn this study, we aimed to integrate tooth number recognition and caries detection in full intraoral photographic images using a cascade region-based deep convolutional neural network (R-CNN) model to facilitate the practical application of artificial intelligence (AI)-driven automatic caries detection in clinical practice. MethodsOur dataset comprised 24,578 images, encompassing 4787 upper occlusal, 4347 lower occlusal, 5230 right lateral, 5010 left lateral, and 5204 frontal views. In each intraoral image, tooth numbers and, when present, dental caries, including their location and stage, were annotated using bounding boxes. A cascade R-CNN model was used for dental caries detection and tooth number recognition within intraoral images. ResultsFor tooth number recognition, the model achieved an average mean average precision (mAP) score of 0.880. In the task of dental caries detection, the model's average mAP score was 0.769, with individual scores spanning from 0.695 to 0.893. ConclusionsThe primary objective of integrating tooth number recognition and caries detection within full intraoral photographic images has been achieved by our deep learning model. The model's training on comprehensive intraoral datasets has demonstrated its potential for seamless clinical application. Clinical SignificanceThis research holds clinical significance by achieving AI-driven automatic integration of tooth number recognition and caries detection in full intraoral images where multiple teeth are visible. It has the potential to promote the practical application of AI in real-life and clinical settings.
Read full abstract