In this work, ray tracing is used to investigate the optical characteristics of various surface structures in ultrathin crystalline silicon (c-Si) for solar cells. Ultrathin c-Si with a thickness of 20 μm is used as the substrate. The light trapping includes front upright pyramids with a molybdenum oxides (MoOx) anti-reflection (AR) layer. Planar ultrathin c-Si (without a MoOx AR layer and upright pyramids) is used as a reference. The wafer ray tracer was developed by a photovoltaic (PV) lighthouse to model the MoOx AR layer to reduce the front surface reflectance and impacts of the AR layer on ultrathin Si solar cells. The optical properties are calculated on the AM1.5 global solar energy spectrum across the 200–1200 nm wavelength region. From the absorbance profile, the photogenerated current density (Jph) in the substrate is also calculated with various surface structures. The front upright pyramids with the MoOx layer result in the largest absorbance enhancement due to the enhanced light scattering by the pyramids and MoOx AR layer. The Jph of 37.41 mA/cm2 is improved when compared to the planar ultrathin c-Si reference. This study is significant as it illustrates the potential of ultrathin c-Si as a promising PV module technology in the future.
Read full abstract