Recent work has shown that mouse APOBEC3 restricts infection by mouse mammary tumor virus (MMTV) and murine leukemia virus (MLV) and that there are polymorphic APOBEC3 alleles found in different inbred mouse strains. For example, C57BL/6 mice, which are resistant to Friend MLV (F-MLV), encode a APOBEC3 gene different from that encoded by F-MLV-susceptible BALB/c mice; the predominant RNA produced in C57BL/6 mice lacks exon 5 (mA3(-5)) and encodes a protein with 15 polymorphic amino acids. It has also been reported that BALB/c mice produce only a variant RNA that lacks exon 2 (mA3(-2)). In this study, we examined the effect of these polymorphic APOBEC3 proteins on MMTV infection. We found that the major RNA made in C57BL/6 and B10.BR mice lacks exon 5 but that BALB/c and C3H/HeN mice predominantly express an RNA that contains all nine exons. In addition to producing the splice variant, C57BL/6 and B10.BR cells and tissues had levels of mA3 RNA fivefold higher than those from BALB/c and C3H/HeN mice. A cloned C57BL/6-derived mA3 protein lacking exon 5 inhibited MMTV infection better than a cloned full-length protein derived from 129/Ola RNA when packaged into MMTV virions. We also tested dendritic cells derived from different inbred mouse strains for their abilities to be infected by MMTV and showed that susceptibility to infection correlated with the presence of the exon 5-encoding allele. In vivo susceptibility to infection cosegregated with the inherited mA3 allele in a C57BL/6 x BALB/c backcross analysis. Moreover, virus produced in vivo in the mammary tissue of mA3 knockout and BALB/c mice was more infectious than that produced in the tissue of C57BL/6 mice. These data indicate that mA3 plays a role in the genetics of susceptibility and resistance to MMTV infection.
Read full abstract