Abstract

Mammalian APOBEC molecules comprise a large family of cytidine deaminases with specificity for RNA and single-stranded DNA (ssDNA). APOBEC1s are invariably highly specific and edit a single residue in a cellular mRNA, while the cellular targets for APOBEC3s are not clearly established, although they may curtail the transposition of some retrotransposons. Two of the seven member human APOBEC3 enzymes strongly restrict human immunodeficiency virus type 1 in vitro and in vivo. We show here that ssDNA hyperediting of an infectious exogenous gammaretrovirus, the Friend–murine leukemia virus, by murine APOBEC1 and APOBEC3 deaminases occurs in vitro. Murine APOBEC1 was able to hyperdeaminate cytidine residues in murine leukemia virus genomic RNA as well. Analysis of the edited sites shows that the deamination in vivo was due to mouse APOBEC1 rather than APOBEC3. Furthermore, murine APOBEC1 is able to hyperedit its primary substrate in vivo, the apolipoprotein B mRNA, and a variety of heterologous RNAs. In short, murine APOBEC1 is a hypermutator of both RNA and ssDNA in vivo, which could exert occasional side effects upon overexpression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.