The effect of the cooling rate on hardness and thermal conductivity in a metallurgical Jominy bar made of AISI 1018 steel, by means of a water end-quenched heat treatment process without diffusion-controlled case depth, is studied with photothermal radiometry (PTR). It is concluded that our two PTR techniques, common-mode rejection demodulation (CMRD) and conventional 50% duty-cycle square-wave frequency scan, are sensitive to low hardness values and gradients, unlike the high values all previous photothermal studies have dealt with to-date. Both PTR methods have yielded an anti-correlation between thermal conductivity and microhardness in this case as in previous cases with heat-treated and diffusion-controlled case depth profiles. It is shown that the cooling rate strongly affects both hardness and thermal conductivity in the Jominy-bar heat-treating process.
Read full abstract