Freeze–thaw events are predicted to be more frequent in temperate forest ecosystems. Whether and how freeze–thaw cycles change soil greenhouse gas fluxes remains elusive. Here, we compared the fluxes of three soil greenhouse gases (CO2, CH4, and N2O) across the spring freeze–thaw (SFT) period, the growing season (GS), and the annual (ALL) period in a temperate broad-leaved Korean pine mixed forest in the Changbai Mountains in Jilin Province, Northeastern China from 2019 to 2020. To assess the mechanisms driving the temporal variation of soil fluxes, we measured eleven soil physicochemical factors, including temperature, volumetric water content, electrical conductivity, gravimetric water content, pH, total carbon, total nitrogen, total-carbon-to-total-nitrogen ratio, nitrate (NO3−), ammonium (NH4+), and dissolved organic carbon, all of which play crucial roles in soil carbon (C) and nitrogen (N) cycling. Our findings indicate that the soil in this forest functioned as a source of CO2 and N2O and as a sink for CH4, with significant differences in greenhouse gas (GHG) fluxes among the SFT, GS, and ALL periods. Our results suggest freeze–thaw events significantly but distinctly impact soil C and N cycling processes compared to normal growing seasons in temperate forests. The soil N2O flux during the SFT (0.65 nmol m−2 s−1) was 4.6 times greater than during the GS (0.14 nmol m−2 s−1), likely due to the decreased NO3− concentrations that affect nitrification and denitrification processes throughout the ALL period, especially at a 5 cm depth. In contrast, soil CO2 and CH4 fluxes during the SFT (0.69 μmol m−2 s−1; −0.61 nmol m−2 s−1) were significantly lower than those during the GS (5.06 μmol m−2 s−1; −2.34 nmol m−2 s−1), which were positively influenced by soil temperature at both 5 cm and 10 cm depths. Soil CO2 fluxes increased with substrate availability, suggesting that the total nitrogen content at 10 cm depth and NH4+ concentration at both depths were significant positive factors. NO3− and NH4+ at both depths exhibited opposing effects on soil CH4 fluxes. Furthermore, the soil volumetric water content suppressed N2O emissions and CH4 oxidation, while the soil gravimetric water content, mainly at a 5 cm depth, was identified as a negative predictor of CO2 fluxes. The soil pH influenced CO2 and N2O emissions by regulating nutrient availability, particularly during the SFT period. These findings collectively contribute to a more comprehensive understanding of the factors driving GHG fluxes in temperate forest ecosystems and provide valuable insights for developing strategies to mitigate climate change impacts.
Read full abstract