The free vibration of cylindrical shells filled with a compressible viscous fluid has been studied by numerous workers using the linearized Navier-Stokes equations, the fluid continuity equation, and Flu¨gge ’s equations of motion for thin shells. It happens that solutions can be obtained for which the interface conditions at the shell surface are satisfied. Formally, a characteristic equation for the system eigenvalues can be written down, and solutions are usually obtained numerically providing some insight into the physical mechanisms. In this paper, we modify the usual approach to this problem, use a more rigorous mathematical solution and limit the discussion to a single thin shell of infinite length and finite radius, totally filled with a viscous, compressible fluid. It is shown that separable solutions are obtained only in a particular gage, defined by the divergence of the fluid velocity vector potential, and the solutions are unique to that gage. The complex frequency dependence for the transverse component of the fluid velocity field is shown to be a result of surface interaction between the compressional and vortex motions in the fluid and that this motion is confined to the boundary layer near the surface. Numerical results are obtained for the first few wave modes of a large shell, which illustrate the general approach to the solution. The axial wave number is complex for wave propagation, the imaginary part being the spatial attenuation coefficient. The frequency is also complex, the imaginary part of which is the temporal damping coefficient. The wave phase velocity is related to the real part of the axial wave number and turns out to be independent of frequency, with numerical value lying between the sonic velocities in the fluid and the shell. The frequency dependencies of these parameters and fluid velocity field mode shapes are computed for a typical case and displayed in non-dimensional graphs.
Read full abstract