Abstract

This paper concerns the free vibrations of cylindrical shells with elastic boundary conditions. Based on the Flügge classical thin shell theory, the equations of motion for the cylindrical shells are solved by the method of wave propagations. The wave numbers are obtained by directly solving an eighth order equation. The elastic-support boundary conditions can be arbitrarily specified in terms of 8 independent sets of distributed springs. All the classical homogeneous boundary conditions can be considered as the special cases when the stiffness for each set of springs is equal to either infinity or zero. The present solutions are validated by the results previously given by other researchers and/or obtained using finite element models. The effects on the frequency parameters of elastic restraints are investigated for shells of different geometrical characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.