Video surveillance plays an increasingly important role in public security and is a technical foundation for constructing safe and smart cities. The traditional video surveillance systems can only provide real-time monitoring or manually analyze cases by reviewing the surveillance video. So, it is difficult to use the data sampled from the surveillance video effectively. In this paper, we proposed an efficient video detection object super-resolution with a deep fusion network for public security. Firstly, we designed a super-resolution framework for video detection objects. By fusing object detection algorithms, video keyframe selection algorithms, and super-resolution reconstruction algorithms, we proposed a deep learning-based intelligent video detection object super-resolution (SR) method. Secondly, we designed a regression-based object detection algorithm and a key video frame selection algorithm. The object detection algorithm is used to assist police and security personnel to track suspicious objects in real time. The keyframe selection algorithm can select key information from a large amount of redundant information, which helps to improve the efficiency of video content analysis and reduce labor costs. Finally, we designed an asymmetric depth recursive back-projection network for super-resolution reconstruction. By combining the advantages of the pixel-based super-resolution algorithm and the feature space-based super-resolution algorithm, we improved the resolution and the visual perception clarity of the key objects. Extensive experimental evaluations show the efficiency and effectiveness of our method.