Abstract
Recent developments of video super-resolution reconstruction often exploit spatial and temporal contexts from input frame sequence by making use of explicit motion estimation, e.g., optical flow, which may introduce accumulated errors and requires huge computations to obtain an accurate estimation. In this paper, we propose a novel multi-branch dilated convolution module for real-time frame alignment without explicit motion estimation, which is incorporated with the depthwise separable up-sampling module to formulate a sophisticated real-time video super-resolution network. Specifically, the proposed video super-resolution framework can efficiently acquire a larger receptive field and learn spatial–temporal features of multiple scales with minimal computational operations and memory requirements. Extensive experiments show that the proposed super-resolution network outperforms current state-of-the-art real-time video super-resolution networks, e.g., VESPCN and 3DVSRnet, in terms of PSNR values (0.49 dB and 0.17 dB) on average in various datasets, but requires less multiplication operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.