Amyloid fibrils formed by peptides found in semen have been shown to enhance HIV infectivity in vitro. The first of these peptides to be identified was the 248–286 fragment of prostatic acid phosphatase (PAP248–286) (Munich et al., 2007). PAP248–286 is highly cationic, and its fibrils might facilitate infection by decreasing the electrostatic repulsion between the negatively charged surfaces of the virus and the target cell. Whereas PAP248–286 can easily form fibrils in seminal fluid, it needs rapid agitation in other environments, and certain ions have been shown to be critical for its assembly into fibrils (Olsen et al., 2012). However, mutation of the positively charged residues to alanine results in a peptide (PAP248–286Ala) that can more easily form fibrilar aggregates. We studied PAP248–286 and PAP248–286Ala fibril formation in water and water + NaCl environments. While PAP248-286Ala can efficiently form fibrils in both water and water + NaCl, PAP248-286 can only do so in a water + NaCl solution. The inability of PAP248–286 to form fibrils in water could be due solely to repulsion between the positively charged peptides, an effect that might be diminished by the presence of salt. However, it is also possible that the explanation lies in PAP248–286’s failure to populate conformations that can easily lead to ordered aggregates. To answer this question, using molecular dynamics simulations, we characterized the ensemble of conformations populated by the two peptides in water and water + NaCl environments. The results indicate that PAP248-286Ala favors contacts that stabilize a strand-turn-strand, or β-arch, motif around P31, the only proline residue in the sequence. Because β-arches are a common feature in amyloid fibrils, and because it is very unlikely that a proline residue would be in any position other than the β-arch, we expect the formation of this motif to be the rate-limiting step in PAP248–286Ala / PAP248–286 fibril formation. Moreover, the contacts stabilizing the β-arch would bring positively charged residues into contact in PAP248–286, which, consistent with the experimental results, would be facilitated by the presence of negative ions. To summarize, we have tried to understand if the inability of PAP248–286 to efficiently form fibrils in water is only due to a slower aggregation caused by electrostatic repulsion between the positively charged peptides. Our data suggest that this effect is also due to electrostatic repulsion between the residues within each monomeric peptide, which prevents PAP248–286 from populating conformations that would lead to ordered aggregates.
Read full abstract