Abstract

Prostatic acid phosphatase (PAP) assembles into amyloid fibrils that facilitate infection by HIV. Its peptide fragments PAP(248–286) and PAP(85–120) also enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of monomeric PAP(248–286) in a biomembrane-mimicking environment can be separated into an N-terminal unordered region, an α-helical central domain, and an α/310-helical C-terminal section (Nanga et al., J. Am. Chem. Soc., 131:17972–17979, 2009). In this work, we used two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy techniques to study spatial structures of isolated central [PAP(262–270)] and C-terminal [PAP(274–284)] fragments of PAP(248–286) in SDS micelle solutions. NMR studies revealed the formation of complexes of both peptides with SDS micelles, with attraction to the micelle membranes occurring mainly through nonpolar and uncharged residues of the peptides. We demonstrate that, when interacting with SDS micelles, PAP(262–270) and PAP(274–284) form α-helical and 310-helical secondary structures, respectively, similar to that found previously for the 39-residue PAP(248–286).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.