To characterize material changes that may occur in virgin cobalt-chromium (Co-Cr) alloy powder when it is blended with alloy powders that have been reused multiple times. Initially, 20 kg of virgin Co-Cr powder was loaded into a laser-sintering device. The tensile test specimens were fabricated in the first (Group 1), fourth (Group 2), seventh (Group 3), tenth (Group 4), and thirteenth (Group 5) production cycles (N = 15). Prior to fabricating the specimens, powder alloy samples were collected from the powder bed for analysis. The tensile strength, elastic modulus, and percent elongation were calculated with tensile testing. Scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM/EDS) and laser particle size distribution (LPSD) were used to analyze the alloy powder samples. The fracture surface of one tensile test specimen from each group was examined via SEM/EDS. One-way ANOVA followed by Dunnett T3 test was used for statistical analysis (α = .05). No difference was observed between groups in terms of tensile strength. A statistically significant difference was observed between Groups 1 and 2 in terms of percent elongation. Groups 2 and 4 were statistically significantly different in terms of both elastic modulus and percent elongation (P ≤ .05). SEM images of the powder alloy showed noticeable differences with increasing numbers of cycles. SEM images and the EDS analysis of the fractured specimens were in accordance with the strength data. Reusing Co-Cr alloy powder increased the particle size distribution. However, there was no correlation between increased cycle number and the mechanical properties of the powder.
Read full abstract